2023 Consumer Confidence Report for Public Water System R C H WSC This is your water quality report for January 1 to December 31, 2023 R C H WSC purchases treated surface water from The City of Rockwall located in Rockwall County. For more information regarding Name __Robin Mayall Phone 972-805-1950 Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (972) 805-1950. #### **Definitions and Abbreviations** Definitions and Abbreviations The following tables contain scientific terms and measures, some of which may require explanation. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples. Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coli form bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. MFL million fibers per liter (a measure of asbestos) mrem: millirems per year (a measure of radiation absorbed by the body) na: not applicable. NTU nephelometric turbidity units (a measure of turbidity) pCi/L picocuries per liter (a measure of radioactivity) #### **Definitions and Abbreviations** ppq ppb: micrograms per liter or parts per billion ppm: milligrams per liter or parts per million minigrans per ner or parts per minion parts per quadrillion, or picograms per liter (pg/L) ppt parts per trillion, or nanograms per liter (ng/L) Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water. ## Information about your Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and reside ntial uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office. You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptospor idium are available from the Safe Drinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water te sted. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. ### Information about Source Water R C H WSC purchases treated water from CITY OF ROCKWALL (TX1990001). CITY OF ROCKWALL provides purchase surface water from North Texas Municipal water district (TX0430044) from the Wylie water plant. The water is obtained from surfer water sources. The water comes from the following reservoirs: Lavon located in Collin County, Jim Chapman located in Hopkins and Delta Counties, Texoma located in Grayson County, Tawakoni located in Hunt, Rains, and Van Zandt Counties and East Fork Raw Water Supply Project (Wetland) located in Kaufman County. TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system contact Robin Mayall at 972-805-1950. | Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination | |-----------------|--------------|------|-------------------|-----------------|-----------------|-------|-----------|--| | Copper | 2023 | 1.3 | 1.3 | 1.15 | 1 | ppm | N | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing | | Lead | 2023 | 0 | 15 | 2.33 | 0 | ppb | N | Corrosion of household plumbing systems;
Erosion of natural deposits. | # **2023 Water Quality Test Results** | , , , | st Level Range of Individual ected Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination | |-------|--|------|-----|-------|-----------|--------------------------------| |-------|--|------|-----|-------|-----------|--------------------------------| | Haloacetic Acids (HAA5) 2023 21 | 12.8 - 26.7 No goal for the total | 60 ppb | N | By-product of drinking water disinfection. | |---------------------------------|-----------------------------------|--------|---|--| |---------------------------------|-----------------------------------|--------|---|--| ^{*}The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year | Total Trihalomethanes (TTHM | 2023 | 39 | 25.3 - 48.7 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | |-----------------------------|------|----|-------------|-----------------------|----|-----|---|--| | | | | | | | | | | ^{*}The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year | Inorganic Contaminants | Collection Date | Highest Level
Detected | Range of Individual
Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination | |--------------------------------|-----------------|---------------------------|--------------------------------|------|-----|-------|-----------|--| | Nitrate [measured as Nitrogen] | 2023 | 0.248 | 0.248 - 0.248 | 10 | 10 | ppm | | Runoff from fertilizer use; Leaching from septictanks sewage; Erosion of natural deposits. | ### **Disinfectant Residual** A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR). | Disinfectant Residual | Year | Average Level | Range of Levels
Detected | MRDL | MRDLG | Unit of Measure | Violation (Y/N) | Source in Drinking Water | |-----------------------|------|---------------|-----------------------------|------|-------|-----------------|-----------------|--| | Total | 2023 | 2.82 | 0.6-4.0 | 4 | 4 | ppm | Y | Water additive used to control microbes. | All Quarters excluding Quarter #2 Average Level and Range of Levels Detected ### **Violations** ### **Chlorine** Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort. | Violation Type | Violation Begin | Violation End | Violation Explanation | |--|-----------------|---------------|---| | Disinfectant Level Quarterly Operating Report (DLQOR). | 04/01/2023 | 06/30/2023 | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | | Unregulated Contaminant | Collection
Date | Average Level
(μg/L) | Range of Levels
Detected (µg/L) | Health-Based Reference Concentration (μg/L) (recommended, not required in the CCR) | Health Information Summary (recommended, not required in the CCR) | |------------------------------|--------------------|-------------------------|------------------------------------|--|--| | Perfluorobutanesulfonic Acid | 2023 | 0.0038 | 0.0032 – 0.0049 | | | | Perfluorobutanoic acid | 2023 | 0.009 | 0.009 - 0.009 | | This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations. | | Perfluorohexanoic acid | 2023 | 0.0051 | 0.0042- 0.0067 | | | | Perfluoropentanoic acid | 2023 | 0.0056 | 0.0046 - 0.0075 | | | #### **Violations** ## **Consumer Confidence Rule** The Consumer Confidence Rule requires community water systems to prepare and provide to their customers annual consumer confidence reports on the quality of the water delivered by the systems. | Violation Type | Violation Begin | Violation End | Violation Explanation | |-----------------------------------|-----------------|---------------|--| | CCR ADEQUACY/AVAILABILITY/CONTENT | 07/01/2023 | | We failed to provide to you, our drinking water customers, an annual report that adequately informed you about the quality of our drinking water and the risks from exposure to contaminants detected in our drinking water. | ## Revised Total Coliform Rule (RTCR) The Revised Total Coliform Rule (RTCR) seeks to prevent waterborne diseases caused by E. coli. E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, | Violation Type | Violation Begin | Violation End | Violation Explanation | |-----------------------------------|-----------------|---------------|---| | MONITORING, ROUTINE, MAJOR (RTCR) | 05/01/2023 | | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | | MONITORING, ROUTINE, MAJOR (RTCR) | 12/01/2023 | | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | # City of Rockwall Water Quality Data for Year 2023 (Cont.) | Synthetic organic contaminants including pesticides and herbicides | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |--|--------------------|--------------------------------|-----------------------------|------|-----|-------|-----------|--| | Chlordane | 2022 | Levels lower than detect level | 0 - 0 | 0 | 2 | ppb | No | Residue of banned termiticide. | | Dalapon | 2022 | Levels lower than detect level | 0 - 0 | 200 | 200 | ppb | No | Runoff from herbicide used on rights of way. | | Di (2-ethylhexyl) adipate | 2023 | Levels lower than detect level | 0 - 0 | 400 | 400 | ppb | No | Discharge from chemical factories. | | Di (2-ethylhexyl) phthalate | 2023 | Levels lower than detect level | 0 - 0 | 0 | 6 | ppb | No | Discharge from rubber and chemical factories. | | Dibromochloropropane
(DBCP) | 2022 | Levels lower than detect level | 0 - 0 | 0 | 200 | ppt | No | Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards. | | Dinoseb | 2022 | Levels lower than detect level | 0 - 0 | 7 | 7 | ppb | No | Runoff from herbicide used on soybeans and vegetables. | | Endrin | 2023 | Levels lower than detect level | 0 - 0 | 2 | 2 | ppb | No | Residue of banned insecticide. | | Ethylene dibromide | 2022 | Levels lower than detect level | 0 - 0 | 0 | 50 | ppt | No | Discharge from petroleium refineries. | | Heptachlor | 2023 | Levels lower than detect level | 0 - 0 | 0 | 400 | ppt | No | Residue of banned termiticide. | | Heptachlor epoxide | 2023 | Levels lower than detect level | 0 - 0 | 0 | 200 | ppt | No | Breakdown of heptachlor. | | Hexachlorobenzene | 2023 | Levels lower than detect level | 0 - 0 | 0 | 1 | ppb | No | Discharge from metal refineries and agricultural chemical factories. | | Hexachlorocyclopentadiene | 2022 | Levels lower than detect level | 0 - 0 | 50 | 50 | ppb | No | Discharge from chemical factories. | | Lindane | 2023 | Levels lower than detect level | 0 - 0 | 200 | 200 | ppt | No | Runoff / leaching from insecticide used on cattle, lumber, and gardens. | | Methoxychlor | 2023 | Levels lower than detect level | 0 - 0 | 40 | 40 | ppb | No | Runoff / leaching from insecticide used on fruits, vegetables alfalfa, and livestock. | | Oxamyl [Vydate] | 2022 | Levels lower than detect level | 0 - 0 | 200 | 200 | ppb | No | Runoff / leaching from insecticide used on apples, potatoes, and tomatoes. | | Pentachlorophenol | 2022 | Levels lower than detect level | 0 - 0 | 0 | 1 | ppb | No | Discharge from wood preserving factories. | | Picloram | 2022 | Levels lower than detect level | 0 - 0 | 500 | 500 | ppb | No | Herbicide runoff. | | Simazine | 2023 | 0.12 | 0.06 - 0.12 | 4 | 4 | ppb | No | Herbicide runoff. | # City of Rockwall Water Quality Data for Year 2023 (Cont.) | Synthetic organic contaminants including pesticides and herbicides | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |--|--------------------|--------------------------------|-----------------------------|------|-----|-------|-----------|--| | Toxaphene | 2023 | Levels lower than detect level | 0 - 0 | 0 | 3 | ppb | No | Runoff / leaching from insecticide used on cotton and cattle | | Volatile Organic
Contaminants | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | 1, 1, 1 - Trichloroethane | 2023 | Levels lower than detect level | 0 - 0 | 200 | 200 | ppb | No | Discharge from metal degreasing sites and other factories. | | 1, 1, 2 - Trichloroethane | 2023 | Levels lower than detect level | 0 - 0 | 3 | 5 | ppb | No | Discharge from industrial chemical factories. | | 1, 1 - Dichloroethylene | 2023 | Levels lower than detect level | 0 - 0 | 7 | 7 | ppb | No | Discharge from industrial chemical factories. | | 1, 2, 4 - Trichlorobenzene | 2023 | Levels lower than detect level | 0 - 0 | 70 | 70 | ppb | No | Discharge from textile-finishing factories. | | 1, 2 - Dichloroethane | 2023 | Levels lower than detect level | 0 - 0 | 0 | 5 | ppb | No | Discharge from industrial chemical factories. | | 1, 2 - Dichloropropane | 2023 | Levels lower than detect level | 0 - 0 | 0 | 5 | ppb | No | Discharge from industrial chemical factories. | | Benzene | 2023 | Levels lower than detect level | 0 - 0 | 0 | 5 | ppb | No | Discharge from factories; leaching from gas storage tanks and landfills. | | Carbon Tetrachloride | 2023 | Levels lower than detect level | 0 - 0 | 0 | 5 | ppb | No | Discharge from chemical plants and other industrial activities. | | Chlorobenzene | 2023 | Levels lower than detect level | 0 - 0 | 100 | 100 | ppb | No | Discharge from chemical and agricultural chemical factorie | | Dichloromethane | 2023 | Levels lower than detect level | 0 - 0 | 0 | 5 | ppb | No | Discharge from pharmaceutical and chemical factories. | | Ethylbenzene | 2023 | Levels lower than detect level | 0 - 0 | 0 | 700 | ppb | No | Discharge from petroleum refineries. | | Styrene | 2023 | Levels lower than detect level | 0 - 0 | 100 | 100 | ppb | No | Discharge from rubber and plastic factories; leaching from landfills. | | Tetrachloroethylene | 2023 | Levels lower than detect level | 0 - 0 | 0 | 5 | ppb | No | Discharge from factories and dry cleaners. | | Toluene | 2023 | Levels lower than detect level | 0 - 0 | 1 | 1 | ppm | No | Discharge from petroleum factories. | | Trichloroethylene | 2023 | Levels lower than detect level | 0 - 0 | 0 | 5 | ppb | No | Discharge from metal degreasing sites and other factories. | | Vinyl Chloride | 2023 | Levels lower than detect level | 0 - 0 | 0 | 2 | ppb | No | Leaching from PVC piping; discharge from plastics factorie |